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1. Introduction

Knowing the stability characteristics of a damaged structure is of significant importance in
engineering. In civil engineering, structures like beam columns, bridges, piles, etc. will bear
damages due to long-term service, collision, impact, etc. An important task of engineers is to
determine the effect of these damages on the stability characteristics of these structures. In the
past two decades, studies on dynamic/stability behaviour of damaged structures have attracted
many researchers. Many relevant literatures have been published. Amongst them, the easily
accessible are Refs. [1–9], etc.
Conceptually, the simulation of a cracked beam-column is analogous to that of a beam column

with stepped changes of cross-sections and/or with intermediate point supports. Recently, the
modified Fourier series (MFS) and the modified beam vibration functions (MBVF) were
developed and have been successfully used in solving the vibration and stability problems of
structures with stepped cross-sections and/or intermediate point supports [10–15].
Most recently, Zheng et al. [16–18,20] further developed the MFS and used it successfully in the

vibration and stability analysis of cracked Euler beams [16,17,20] and vibration analysis of
cracked Timoshenko beams [18].
In this paper, a new method is developed for computing the buckling load reduction of a

Timoshenko beam column with an arbitrary number of transverse open cracks. The essence of
this new method lies in the use of a kind of MFS that is developed specially for the analysis of a
beam column with arbitrary number of transverse open cracks. Unlike the conventional Fourier
series, the modified series is able to approach a function with internal geometrical discontinuities
effectively. Based on the present MFS, one can treat the cracked beam column in the most usual
way and thus reduce the problem to be a simple one. As can be seen from the stiffness matrix in
stability equation (37), the extra effort needed is just to add the K4 matrix to the stiffness matrix of
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the beam column. In the present method, only standard linear eigenvalue equations, rather than
non-linear algebraic equations, need to be solved. Since this new method falls within the frame of
continuous methods, its capability of achieving higher accuracy is expected. Moreover, all the
formulae are expressed in a unified way and in matrix form, which renders the computer coding
quite straightforward. To demonstrate the effectiveness and accurateness of the present method,
several numerical examples are shown.

2. Theory and formulation

2.1. Modified Fourier series Ym(y)

Fig. 1 shows a beam column having (Q�1) number of transverse open cracks located at y ¼
y2; y3; y; yQ; N point-spring supports located at y ¼ s1; s2; y; sN and having a continuous
elastic support kf ðyÞ; respectively. The beam column can have non-uniform cross-sectional areas
A(y) and various second moments of area I(y) along the longitudinal y direction. The depths of
the cracks are {ai, i=1, 2,y,Q�1}, aiX0; and the translational-and-rotational stiffness of the
point springs are {ki, wi, i ¼ 1; 2; y; N}. The point springs are introduced here for the purpose of
modelling the boundary supports and the intermediate point supports, if any.
The transverse deflection and the rotation of cross-section of the Timoshenko beam column are

denoted by w(y) and cðyÞ; respectively, where y stands for the location. Considering the continuity
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Fig. 1. An axially compressed Timoshenko beam having (Q�1) number of cracks located at y ¼ y2; y3; y; yQ; N

spring supports located at y ¼ s1; s2; y; sN and a continuous elastic support kf ðyÞ:
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of the function w(y) and discontinuity of the function cðyÞ; we can express them as follows:

wðyÞ ¼
XR

m¼1

wm %YmðyÞ ¼ %HðyÞq1 ðR ¼ 2r þ 1Þ; ð1Þ

cðyÞ ¼
XR

m¼1

cmYmðyÞ ¼ HðyÞq2 ðR ¼ 2r þ 1Þ; ð2Þ

where

%HðyÞ ¼ ½ %Y1ðyÞ %Y2ðyÞ y %YRðyÞ �; HðyÞ ¼ ½Y1ðyÞ Y2ðyÞ y YRðyÞ �; ð3; 4Þ

q1 ¼ ½w1 w2 y wR �T; q2 ¼ ½c1 c2 y cR �T: ð5; 6Þ

In the above equations, wm and cm are the generalized co-ordinates of deformation for the
beam column; %YmðyÞ is the Fourier series base function [19] and YmðyÞ ¼ %YmðyÞ þ *YmðyÞ ( *YmðyÞ is
the augmenting piece-wise constant function shown in Fig. 2) is the so-called modified Fourier
function which is specifically constructed such that it can satisfy the following internal
discontinuities [18]:

Ymðyj þ 0Þ � Ymðyj � 0Þ ¼ cj�1EIY 0
mðy-yjÞ; ð7Þ

where cj�1 is the local flexibility coefficient of the crack having a depth of aj�1: For rectangular
cross-section and one-sided cracks, it can be expressed as [20]

CE ðh=12EIÞe1=ð1�zÞð�0:2314	 10�4zþ 52:3790z2 � 130:2463z3 þ 308:4111z4

� 602:1761z5 þ 937:6805z6 � 1306:7397z7 þ 1398:7523z8 � 1059:6215z9 þ 388:1628z10Þ

ðz ¼ a=h; 0pzp0:5; erroro0:038%Þ: ð8Þ

For circular cross-section and one-sided cracks, it can be expressed as [20]

CE ðpD=64EIÞe1=ð1�zÞð0:1687	 10�3z0:4 � 0:9770	 10�2z0:8 þ 0:2382z1:2

� 3:2016z1:6 þ 25:5385z2 � 58:1428z2:4 þ 679:8828z2:8 � 1350:4090z3:2

þ 794:0302z3:6 � 11:3371z4

ðz ¼ a=D; 0pzp0:1; erroro0:045%Þ ð9aÞ
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Fig. 2. Augmenting piece-wise constant function *YmðyÞ:
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and

CE ðpD=64EIÞe1=ð1�zÞð5:4931z0:4 � 60:0706z0:8 þ 249:0679z1:2 � 437:5001z1:6 þ 172:6435z2

� 55:5990z2:4 þ 3036:1620z2:8 � 7991:3829z3:2 þ 7992:1873z3:6 � 2934:3483z4

ðz ¼ a=D; 0:1pzp0:5; erroro0:0064%Þ: ð9bÞ

2.2. Energy analysis

The potential energy of a cracked Timoshenko beam column under axial load can be expressed
as the summation of the following five parts:

U ¼ U1 þ U2 þ U3 þ U4 þ U5 ð10Þ

in which U1 and U2 are the potential energies stored in the cracked beam column due to bending
and shearing deformation of the beam column itself; U3 is the potential energy stored in the
distributed elastic support kf ðyÞ and point springs which are used to model the boundary supports
and also the intermediate supports (if any); U4 is the potential energy stored in the massless
rotational springs which are used to model the existence of cracks; U5 is the potential energy of the
external variable axial load lNðyÞ:

Potential energy U1:

U1 ¼
XQ

i¼1

1

2

Z yiþ1

yi

EIðyÞc2
;yðyÞ dy: ð11Þ

Substituting Eq. (2) into Eq. (11), we have

U1 ¼ 1
2 q

T
2K1q2; ð12Þ

where K1 represents the stiffness matrix of the cracked beam column corresponding to the
potential energy U1 such that

K1 ¼
XQ

i¼1

Z yiþ1

yi

EIðyÞHT
;yðyÞH;yðyÞ dy ¼

Z l

0

EIðyÞ %HT
;yðyÞ %H;yðyÞ dy: ð13Þ

Potential energy U2:

U2 ¼
1

2

Z l

0

k0GAðyÞðw;y � cÞ2 dy: ð14Þ

Substituting Eqs. (1) and (2) into Eq. (14), we have

U2 ¼ 1
2
qT1K21q1 � qT1K22q2 þ

1
2
qT2K23q2; ð15Þ

where

K21 ¼
Z l

0

k0GAðyÞ %HT
;yðyÞ %H;yðyÞ dy; ð16Þ

K22 ¼
Z l

0

k0GAðyÞ %HT
;yðyÞHðyÞ dy; ð17Þ
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K23 ¼
Z l

0

k0GAðyÞ %HTðyÞHðyÞ dy: ð18Þ

Potential energy U3:

U3 ¼
XN

i¼1

1
2
½kiw

2ðsiÞ þ wic
2ðsiÞ� þ

Z l

0

1
2

kf ðyÞw2ðyÞ dy: ð19Þ

Substituting Eqs. (1) and (2) into Eq. (19), we have

U3 ¼ 1
2
qT1K31q1 þ

1
2
qT2K32q2; ð20Þ

where

K31 ¼
XN

i¼1

ki
%H
TðsiÞ %HðsiÞ þ

Z l

0

kf ðyÞ %H
TðyÞ %HðyÞ dy; ð21Þ

K32 ¼
XN

i¼1

wiH
TðsiÞHðsiÞ: ð22Þ

Potential energy U4:

U4 ¼
XQ

j¼2

1

2

1

cj�1

� �
½cðyj þ 0Þ � cðyj � 0Þ�2: ð23Þ

Substituting Eq. (2) into Eq. (23), we have

U4 ¼ 1
2
qT2K4q2; ð24Þ

where K4 represents the stiffness matrix of the cracked beam column corresponding to the
potential energy U4 such that

K4 ¼
XQ

j¼2

fcj�1½EIðyjÞ�2g %H
T
;yðyjÞ %H;yðyjÞ: ð25Þ

Potential energy U5:

U5 ¼ � 1
2
l
Z l

0

NðyÞw2
;yðyÞ dy: ð26Þ

Substituting Eq. (1) into Eq. (26), we have

U5 ¼ � 1
2
qT1KGq1; ð27Þ
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where KG represents the stiffness matrix of the cracked beam column corresponding to the
potential energy U5 such that

KG ¼
Z l

0

NðyÞ %HT
;y
%H;y dy: ð28Þ

Finally, substituting Eqs. (12), (15), (20), (24) and (27) into Eq. (10), we obtain the total
potential energy of the cracked-beam-column system,

U ¼ 1
2 q

T
1 ðK21 þ K31 þ Kf � lKGÞq1 þ

1
2 q

T
2 ðK1 þ K23 þ K32 þ K4Þq2 � qT1K22q2: ð29Þ

2.3. Stability equations

The equilibrium equations of the cracked Timoshenko beam-column are:

@U

@q1
¼ 0; ð30Þ

@U

@q2
¼ 0: ð31Þ

Substituting Eq. (29) into Eqs. (30) and (31), we have

ðK21 þ K31 � lKGÞq1 � K22q2 ¼ 0; ð32Þ

ðK1 þ K23 þ K32 þ K4Þq2 � KT
22q1 ¼ 0: ð33Þ

Eqs. (32) and (33) can be written into one matrix equation,

Kq ¼ 0; ð34Þ

where

K ¼
K21 þ K31 � lKG �K22

�KT
22 K1 þ K23 þ K32 þ K4

" #
; ð35Þ

q ¼
q1

q2

" #
: ð36Þ

Eliminating q2 in Eq. (34), we have the following stability equation:

K21 þ K31 � K22ðK1 þ K23 þ K32 þ K4Þ
�1KT

22

� �
q1 ¼ lKGq1: ð37Þ
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Fig. 3. A simply supported beam subjected to axial compression load.
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Eq. (37) is a standard generalized linear eigenvalue equation that can be solved by standard
programs. It is also worth noting that the matrix K4 represents the cracks’ effect on the stiffness of
the beam column.
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Fig. 5. A column with a crack at its bottom.
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3. Numerical examples

3.1. Example 1. Effect of slenderness on the buckling load for a pin–pin column without cracks

For verification of the proposed theory and the relevant program coding, we first computed the
buckling loads of a pin–pin column without any cracks (Fig. 3). The beam column has rectangular
cross-section with width b and height h (b ¼ h). The effect of slenderness ratio (l=h) on the
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buckling loads of the beam column was studied by the present method. The results are shown in
Fig. 4. In Fig. 4, the vertical axis stands for the ratio of the buckling loads of Timoshenko column
and Euler column over the value P�

cr ¼ p2EI=l2; the horizontal axis stands for the slenderness
ratio (l/h). From Fig. 4 we can see that, in the case of slender column, when l/h is greater than 10,
the difference between the Timoshenko column and the Euler column is insignificant. But, in the
case of short columns, i.e., when the slender ratio l/h decreases, the shear deformation in the
column becomes more significant and must be taken into account.

3.2. Example 2. A column with a crack at the bottom

Fig. 5 shows a column (l ¼ 6m, D ¼ 1m; E ¼ 28GPa, m ¼ 0:2) with an open crack at its
bottom. The depth of the crack is variable. The computed results are shown in Fig. 6. In Fig. 6,
the vertical axis stands for the buckling load reduction while the horizontal axis stands for the
relative crack depth.

3.3. Example 3. A column with a crack with variable location

The same column as in Example 2 is considered. The column has an open crack with depth
a ¼ 0:5m but variable location. The computed results are shown in Fig. 7. The same problem can
also be analyzed by using Euler beam theory [17] and the corresponding results are also shown in
Fig. 7.

4. Conclusions

A new Modified Fourier Series (MFS) was presented. It was developed to tackle the problem in
beam columns with an arbitrary number of open cracks. The Modified Fourier Series can
approach a function with internal geometrical discontinuities effectively. Via the Euler–
Lagrangian approach, we can treat the stability analysis of a cracked beam column in the most
usual way. It thus renders the problem-solving procedures rather simple. In the formulation, an
open crack assumes having stiffness, which is simply added to the stiffness matrix of the beam
column. The beam column can be of non-uniform cross-section and the number of cracks can be
arbitrary. In solving the buckling load of a cracked beam column, only a standard linear
eigenvalue equation needs to be solved. All the formulae are expressed in matrix form and
therefore computer coding is straightforward. Numerical examples showed that the present
method is versatile and effective.
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